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Extended Abstract

Graphs have become a mainstay in modeling several systems, with applications ranging from sociology
and political science to public health and biochemistry. Random Dot Product Graphs (RDPGs)
have emerged as a powerful paradigm for statistical analysis of graphs. These encompass a wide
range of networks, including the stochastic (SBM) and its common extensions, such as the degree-
corrected block model (Karrer and Newman, 2011) and mixed-membership SBM (Airoldi et al., 2008).
RDPGs belong to the family of latent position models of Hoff et al. (2002), and typify the manifold
hypothesis from statistical learning to the graphical setting: high-dimensional data often lie near a
lower-dimensional manifold. Recent work in RDPGs has established that the spectral embedding of
RDPGs are able to recover the low-dimensional structure in the latent space Athreya et al. (2017);
Solanki et al. (2019); Rubin-Delanchy et al. (2017); Rubin-Delanchy (2020).

The defining quality of a graph is that it conveys relationships between vertices. In a wide variety
of settings, the existence, lack of existence, or nature of such relationships may be sensitive. Pre-
serving privacy in such settings can be achieved through the notion of edge differential privacy for
graphs.

In this work, we consider a randomized-response mechanism called the edgeFlip, which releases a
sanitized graph satisfying ε–edge differential privacy. We show that for a RDPG, the output of
edgeFlip is also a RDPG. Then, using tools from the burgeoning area of Topological Data Analysis
(TDA), we show that if the structure underlying a RDPG in the latent space is supported on
a lower-dimensional manifold M, then the ε–edge differentially private synthetic graph obtained
via edgeFlip is also supported on a manifold M′ with identical topological features (to be made
precise later). Additionally, for the privacy budget ε = 0, the manifold M′ retracts to a single
point, making the RDPG equivalent to an Erdős-Rényi graph. In essence, for ε > 0, the privacy
mechanism warps the original manifoldM in a way such that the subtle topological features are
still preserved. Furthermore, we assess the quality of the spectral embedding of the RDPG using
persistence diagrams. Asymptotically, we can show that even though the limiting persitence diagram
obtained via edgeFlip is different from that of the original graph, the shift-invariant bottleneck
distance (a variant of the bottleneck distance which identifies the same input metric space measured
in two different units) between the two limiting persitence diagrams converges to zero. We illustrate
the advantage of employing edgeFlip as opposed to other alternatives. Lastly, we highlight the benefit
of the topological perspective by employing ToMaTO—a topologically-motivated clustering algorithm
Chazal et al. (2013)—as an alternative to the k-Means algorithm for spectral clustering. To the best
of our knowledge, our work is the first to examine the structure of a differential-privacy mechanism
through the lens of algebraic topology and statistical inference.
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Background

Random Dot-product Graphs. Statistical inference from graphs (equivalently networks)—
given by G = (V,E), and consisting of V = {v1, v2, . . . , vn} distinct vertices (equivalently nodes) and
E ⊆ V × V edges—ordinarily begins by embedding the vertices of the graph as points in a space;
most commonly via spectral embedding of the adjacency matrix A, or the
Laplacian L associated with the graph G. A rigorous justification for spectral
embedding from a statistical standpoint stems from recent work establishing
that the embedding asymptotically recovers meaningful latent information
for the class of random dot-product graphs. (Lei, 2018; Rubin-Delanchy et al.,
2017; Rubin-Delanchy, 2020; Solanki et al., 2019). We refer the reader to
Athreya et al. (2017) for a recent survey of results. The defining characteristic
for RDPGs is that the likelihood of a connection between two vertices vi, vj
is characterized by the dot-product 〈x(vi),x(vj)〉2 of their respective latent
positions xi,xj ∈ Rd. Given G, a RDPG with latent positions {x1, . . . ,xn}
and adjacency matrix A, the adjacency spectral embedding of G into Rm
for 0 < m ≤ d is given as follows. Consider the spectral decomposition
A = PΛP >+QΩQ>, where Λ is the m×m diagonal matrix comprising of
the m–largest eigenvalues of A (by absolute value). The adjacency spectral
embedding is the collection of points {x̂1, . . . , x̂n} ⊂ Rm obtained from the
columns of the matrix

[
x̂1| . . . |x̂n

]
= P |Λ| 12 .
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Definition 1 (RDPG and Generalized RDPG). Let P be a probability measure on Rd and p, q ∈ Z+

such that (i) p + q = d, (ii) for X ∼ P the second-moment matric ∆P =· E (〈X,X〉2) has rank d,
and (iii) for X |= Y ∼ P it holds that 〈X, Ip,qY 〉 ∈ [0, 1] a.s., where Ip,q = Diag

(
1p
>,−1q>

)
is the

indefinite identity matrix with signature (p, q).

Then G ∼ gRDPG(P, p, q) is said to be a generalized random dot-product graph with signature (p, q)
and base measure P, if for X1, . . . ,Xn iid from P and i, j<n the adjacency matrix

Aij |X1, . . . ,Xn ∼ Bernoulli
(〈

Xi, Ip,qXj

〉
2

)
.

Furthermore, when p = d and q = 0, then G ∼ RDPG(P) is a random dot-product graph.

It is easy to see that RDPGs are identifiable up to arbitrary transformations of the orthogonal group
O(d); similarly, gRDPGs are identifiable up to transformations of the indefinite orthogonal group
O(p, q). This is referred to as the inherent non-identifability of RDPGs. Notwithstanding, they still
encompass a large class of commonly used models. Of special interest in this work are cases when
P is supported on a low-dimensional structureM⊂ Rd. For example, if P = δx is a dirac mass at
point x ∈ Rd with π =· ‖x‖2 ∈ (0, 1), then RDPG(P) = gRDPG(P, p, q) is an Erdős-Rényi graph with
parameter π. Similarly, if P =

∑
k αkδxk

is a mixture of k dirac masses, then the resulting RDPG(G)
will be an SBM. The sociability network from Caron and Fox (2017) is another example of a gRDPG
where the underlying structure is a 1-dimensional manifold.

Differentially-Private Synthetic Graphs. Differential privacy for graphs typically
constitue one of two cases: (i) Node differential privacy, and (ii) Edge differential privacy. They differ
in how one interprets the notion of “neighboring” graphs. Node differential privacy is a stronger
notion of privacy, where the identity of the nodes in the network is protected. In contrast, edge
differential privacy is used to protect the worst-case disclosure risk of interactions (represented by
the edges) between the components (represented by the nodes), when the identity of the nodes is
known a priori. Indeed, satisfying node differential privacy implies edge differential privacy. In many
applications, however, node differential privacy offers such strong privacy protection that it precludes
meaningful analysis (Qin et al., 2017).
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Definition 2 (ε–edge differential privacy). Let ε > 0 and Gn = {(V,E) : |V | = n} denote the set of
all graphs with n vertices. A randomized mechanism A : Gn → Gn satisfies ε–edge differential privacy
if for all graphs G1 ∼ G2 differing in a single edge, and for all sets of graphs S ⊆ Gn,

P (A(G1) ∈ S) ≤ eεP (A(G2) ∈ S)

The privacy mechanism we focus on in this work is the symmetric edge-flip mechanism edgeFlip, as
described in Karwa et al. (2017); Qin et al. (2017); Imola et al. (2020).

Definition 3 (edgeFlip). Let Un denote the class of symmetric, holllow, binary n × n matrices.
Given a graph G, edgeFlip is the randomized mechanism Aε : Un → Un given by

Aε(A)ij |Aij =

{
Zij |Aij i ≤ j
Zji|Aji i > j,

where, for π(ε) =· 1
1+exp(ε) the upper-triangular random variables {Zij}i≤j are given by

Zij |Aij =

{
1−Aij w.p. π(ε)

Aij w.p. 1− π(ε).

Karwa et al. (2017) show that edgeFlip satisfies ε–edge differential privacy. In addition, edgeFlip is
simple to implement and flexible. Karwa et al. (2017) discusses a central differential privacy setting for
edgeFlip where the synthetic graph is released by a trusted curator, while Qin et al. (2017) discusses a
local differential privacy implementation. In this work, we show that for the class of RDPGs, edgeFlip
preserves the local geometric and global topological features which underlie the graph.

Topological Data Analysis. TDA is a framework that provides mathematical, statistical and
algorithmic tools to extract geometric and topological structures in complex data. Informally speaking,
given a collection of points Xn = {x1,x2, . . . ,xn}, persistent homology summarizes the multiscale
features underlying the data concisely as a persistence diagram Dgm (Xn). The basic process is as
follows. At each resolution r > 0, an object, called the simplicial complex Kr, is constructed to
encode the geometric and topological information underlying the data. For example, the number of
connected components, loops, holes, etc. Persistent homology keeps track of the evolution and changes
in homology at different resolutions – for example, as r increases a new topological features are born
at r = b, and subsequently vanishes at resolution r = d > b. The pair of birth and death times
associated with the collection topological features, {(b, d) : 0 ≤ b < d <∞} =: Dgm (Xn), is called
a persitence diagram. By examining the sample points under a spectrum of resolutions, persistent
homology sheds light on the local geometric and global topological features which underlie the
sample points. The space of persistence diagrams is endowed with a collection of Wasserstein metrics
{Wp(·, ·)}p≥1, and the special case of W∞(·, ·) is referred to as the bottleneck distance. An important
property of persistence diagrams is that, although they encode subtle features underlying the data,
they are invariant to O(p, q) transformations. This makes persistence diagrams particularly useful for
analyzing the latent structure underlying RDPGs – which have rich geometric information but are
limited by their inherent non-identifiability. We refer the reader to Edelsbrunner and Harer (2010) for
a comprehensive introduction to TDA, and Chazal and Michel (2017) for a concise overview.

Main Results

Suppose P is a distribution supported on a low-dimesnional structureM∈ Rd satisfying the conditions
of Def. 1. If G ∼ RDPG (P), we begin by showing that for edgeFlip, Aε(G) is also an RDPG.

Proposition 1 (Closure of edgeFlip). If G ∼ RDPG (P) with supp (P) =M ∈ Rd. Then for ε > 0
Aε(G) ∼ RDPG (Q) with supp(Q) =M′, whereM′ ⊂ Rd+1 is the image of the map

φ : x 7→
√

1− 2π(ε) · x⊕
√
π(ε),

and Q = φ]P is the pushforward of P through φ.
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Figure 1. (Left) The effect of edgeFlip brings the clusters closer together as per Corollary 1.
(Right) edgeFlip outperforms LaplaceFlip, which is another ε–edge differentially private mechanism.
Simulation results from some other mechanisms tested are omitted for clarity.

The following corollary is obtained as a consequence of Proposition 1. The first part establishes
thatM′ ⊂ Rd contracts towards the center as the privacy budget ε decreases. This phenomenon is
illustraed in Figure 1. The second part establishes that, under the edgeFlip mechanism, the resulting
M′ is topologically equivalent toM in a strong sense. Third, when ε = 0, the resulting RDPG for
Aε(G) is an Erdős-Rényi graph with parameter 1

2 .

Corollary 1. Under the same conditions as Proposition 1: (i) If G is a RDPG thenM is bounded,
and for ε1 < ε2, diamM′1 < diamM′2. (ii) When ε > 0,M′ is diffeomorphic toM. (iii) When ε = 0,
M′ ≡ p ∈ Rd+1, where ‖p‖ = 1

2 and p ⊥ x for all x ∈M.

Although Proposition 1 and Corollary 1 are explicitly stated for RDPGs, a similar holds for gRDPGs.
However, when the signature (p, q) is non-trivial, the analogue of Proposition 1 relies on recognizing
the indefinite inner product introduced by Ip,q as an inner-product in a finite dimensional Krĕın space.
We omit the details for brevity, and refer the reader to Lei (2018) for an excellent introduction.

Let Xn = {x̂1, . . . , x̂n} denote the spectral embedding of G and Yn = {ŷ1, . . . , ŷn} the embedding
for Aε(G). The next establishes that even though Dgm (Xn) and Dgm (Yn) do not converge to the
same population limit; if we consider the shift-invariant bottleneck distance WSI

∞ (·, ·) — a variant of
the bottleneck distance introduced in Sheehy et al. (2018) — then Dgm (Xn) and Dgm (Yn) converge
to the same population equivalence class.
Proposition 2. If P satisfies the (a, b)–standard condition for α > 1, β > 0 (c.f. Chazal et al.,
2015), and G ∼ RDPG (P), then the following hold: (i) W∞ (Dgm (Xn) ,Dgm (M′)) p−→ 0 as n→ 0.
The convergence rate follows from Solanki et al. (2019), and is identical to the non-private case
albeit with sub-optimal constants owing to privacy. It follows that W∞ (Dgm (Xn) ,Dgm (Yn)) 6→ 0.
(ii) Furthermore, for shift-invariant bottleneck distance, WSI

∞ (Dgm (Xn) ,Dgm (Yn))
p−→ 0 as n→ 0.

Lastly, as noted in Rubin-Delanchy et al. (2017), several theoretical arguments can be made against the
use of the k-Means algorithm for spectral clustering. Building on the topological perspective developed
here, we propose using the ToMATo algorithm (Chazal et al., 2013) for spectral clustering. As
illustrated in Figure 2, a clustering algorithm more suited to the data and the privacy mechanism leads
to arguably better results. As future work, we hope to explore similar connections to graphons.

(a) Latent Space M (b) G ∼ RDPG (unif(M)) (c) k-Means clustering (d) ToMaTO Clustering

Figure 2. Illustration of topology-aware spectral clustering.
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