class: inverse, center, title-slide, middle count: false <style> .inverse { background-color: #1b1b1b; } .title-slide .remark-slide-number { display: none; } </style> # .orange[Statistical Invariance of Betti Numbers <br> .tiny[In the thermodynamic regime]] ### <br><br><br> Siddharth Vishwanath <br> .small[.grey[With Kenji Fukumizu, Satoshi Kuriki & Bharath Sriperumbudur]] <!-- ### <br><br> 3 August, 2020 --> <img style="position: absolute; bottom: 0; left: 0; border: 0;" src="images/psu-logo2.png" height=25%> <img style="position: absolute; bottom: 0; right: 0; border: 0;" src="images/ism-logo.png" height=20%> --- # Outline 1. .large[.orange[.bolder[Statistics + Topology]]]<br/><br/><br/> 1. .large[.bolder[Preliminaries]]<br/><br/><br/> 1. .large[.bolder[Invariance : Characterization]]<br/><br/><br/> 1. .large[.bolder[Invariance via Topological Groups]]<br/><br/><br/> 1. .large[.bolder[Invariance via Excess Mass]]<br/><br/><br/> --- class: inverse, center, middle count: false # Statistics + Topology --- # Sufficient Statistics may not suffice <!-- <img src="images/Anscombes_quartet_3.svg" width="650"> --> <img src="images/anscombe.png" width="650"> .center[Anscombe's quartet] </div> --- # Sufficient Statistics may not suffice <div class="centered"> <img align="centered" class="animated-gif" src="images/DinoSequential.gif" width="120%"> .center[Anscombe's quartet on steroids] </div> <br/><br/><br/><br/><br/> .tiny[.grey[Datasaurus by Alberto Cairo]] --- layout: false class: inverse, center, middle count: false # Preliminaries ## .orange[Topological Ingredients] --- layout: true class: split-five with-border border-black .column[.content[ .split-five[ .row.bg-main1[.content.center.vmiddle[ # Space ]] .row.bg-main2[.content.center[ ## Circle ]] .row.bg-main3[.content.center[ ## Sphere ]] .row.bg-main4[.content.center[ ## Torus ]] .row.bg-main5[.content.center[ ## `\(3d_{z^2}\)` ]] ]]] .column[.content[ .split-five[ .row.bg-main1[.content.center.vmiddle[ # Shape ]] .row.bg-main2[.content.center[ <img src="images/circle.svg" width="100",height="100"> ]] .row.bg-main3[.content.center[ <img src="images/sphere.svg" width="100",height="100"> ]] .row.bg-main4[.content.center[ <img src="images/torus.svg" width="100",height="100"> ]] .row.bg-main5[.content.center[ <img src="images/orbital.png" width="100",height="100"> ]] ]]] .column[.content[ .split-five[ .row.bg-main1[.content.center.vmiddle[ # `\(\beta_0\)` ]] .row.bg-main2[.content.center[ ## 1 ]] .row.bg-main3[.content.center[ ## 1 ]] .row.bg-main4[.content.center[ ## 1 ]] .row.bg-main5[.content.center[ ## 1 ]] ]]] .column[.content[ .split-five[ .row.bg-main1[.content.center.vmiddle[ # `\(\beta_1\)` ]] .row.bg-main2[.content.center[ ## 1 ]] .row.bg-main3[.content.center[ ## 0 ]] .row.bg-main4[.content.center[ ## 2 ]] .row.bg-main5[.content.center[ ## 1 ]] ]]] .column[.content[ .split-five[ .row.bg-main1[.content.center.vmiddle[ # `\(\beta_2\)` ]] .row.bg-main2[.content.center[ ## 0 ]] .row.bg-main3[.content.center[ ## 1 ]] .row.bg-main4[.content.center[ ## 1 ]] .row.bg-main5[.content.center[ ## 3 ]] ]]] --- class: fade-row2 fade-row3 fade-row4 fade-row5 gray-row2 gray-row3 gray-row4 gray-row5 --- count: false class: fade-row3 fade-row4 fade-row5 gray-row3 gray-row4 gray-row5 --- count: false class: fade-row2 fade-row4 fade-row5 gray-row2 gray-row4 gray-row5 --- count: false class: fade-row2 fade-row3 fade-row5 gray-row2 gray-row3 gray-row5 --- count: false class: fade-row2 fade-row3 fade-row4 gray-row2 gray-row3 gray-row4 --- layout: false class: inverse, center, middle count: false # Preliminaries ## .orange[Probabilistic Ingredients] --- # Random Topology * Given a probability space `\((\Omega,\mathcal{F},\mathbb{P})\)` and some metric-space `\(\mathcal{X}\)` * `\(\mathbb{X}_n = \{ \boldsymbol{X}_1, \boldsymbol{X}_2, \dots \boldsymbol{X}_n \} \sim \mathbb{P}\)` - A fixed probability measure, i.e., observed i.i.d. - A random field, e.g., Poisson Process -- * A simplicial complex, `\(\mathcal{K}(\mathbb{X}_n,r)\)`, is a random-variable measurable w.r.t. `\(\mathbb{P}^{\otimes n}\)` -- * `\(\mathbf S : \mathcal X^n \rightarrow \mathcal S\)` is a topological summary, e.g., `\(\beta_k \left( \mathcal{K}(\mathbb{X}_n,r) \right) : \mathcal{X}^n \rightarrow \mathbb{N}\)` -- <br/><br/> * What are the properties of these **.purple[random]** topological summaries? `\begin{align} \text{(LLN)} & & \lim\limits_{n\rightarrow \infty}\frac{1}{n}\beta_k\left( \mathcal{K}(\mathbb{X}_n,r) \right) = \color{red}{\gamma_k(\mathbb{P})} \ \ \text{a.s.} \hspace{2cm}\\ \\ \text{(CLT)} & & \lim\limits_{n\rightarrow \infty}\frac{\beta_k\left( \mathcal{K}(\mathbb{X}_n,r) \right) - \mathbb{E}(\beta_k\left( \mathcal{K}(\mathbb{X}_n,r) \right))}{\sqrt{n}} \sim \color{red}{\mathcal{N}(0,\sigma^2)} \end{align}` .tiny[.caption[Bobrowski and Kahle (2018); Kahle and Meckes (2013); Yogeshwaran, Subag, and Adler (2017)]] --- layout: true class: center,split-three # .left[Asymptotic Regimes] In the simplicial complex `\(\mathcal{K}\left( \mathbb{X}_n, {r_n} \right)\)`, `\(r_n\)` depends on `\(n\)` .column.bg-main1[.content[ <br><br><br><br><br><br><br> .center[ Dense <img src="images/dense.gif" width="300",height="300">] `\(nr_n^d \rightarrow \infty\)` ]] .column.bg-main1[.content[ <br><br><br><br><br><br><br> .center[ Sparse <img src="images/sparse.gif" width="300",height="300">] `\(nr_n^d \rightarrow 0\)` ]] .column.bg-main1[.content[ <br><br><br><br><br><br><br> .center[ Thermodynamic <img src="images/thermodynamic.gif" width="300",height="300">] `\(nr_n^d \rightarrow t \in (0,\infty)\)` ]] --- class: show-000 --- count: false class: show-100 --- class: show-110 count: false --- class: show-111 count: false --- layout: false count: false class: inverse, center, middle # Statistical Invariance ## .orange[Characterization] --- layout: false # Statistical Invariance of Betti Numbers * Consider a family of distributions* `\(\mathcal{P}\)` on `\(\mathcal X \subseteq \mathbb R^D\)` with `\(\mathbb P, \mathbb Q \in \mathcal P\)` * Given `\(\mathbb{X}_n= \{ \boldsymbol{X}_1, \boldsymbol{X}_2, \dots \boldsymbol{X}_n \} \sim \mathbb{P}\)` and `\(\mathbb{Y}_m= \{ \boldsymbol{Y}_1, \boldsymbol{Y}_2, \dots \boldsymbol{Y}_m \} \sim \mathbb{Q}\)` .content-box-purple[ `\(\mathbf{S}(\mathbb{P}^{\otimes n})\!:= \mathbf{S}(\mathbb{X}_n)\!= \frac{1}{n} \Big( \beta_0\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \beta_1\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \dots , \beta_d\big( \mathcal{K}(\mathbb{X}_n,r_n) \big) \Big)\)` ] -- * **.purple[Invariance.]** .center[<body> `\(\bbox[20px, border: 2px solid orange]{ \text{Can we have that } \lim\limits_{n\rightarrow \infty}\mathbf{S}(\mathbb{P}^{\otimes n}) {=} \lim\limits_{m\rightarrow \infty}\mathbf{S}(\mathbb{Q}^{\otimes m}) \text{ ? } }\)`</body>] -- <br> * **Example (1).** Consider `\(\color{red}{\mathcal{P} = \{ \mathcal{N}(\theta,\mathbf{I}_d) : \theta \in \mathbb{R}^d \}}\)` and `\(\color{green}{\mathbf{S}(\mathbb{X}_n) = \overline{\mathbf{X}}_n}\)` .center[ If `\(\mathbf X_i \sim \mathbb P_{\theta_1}\)` and `\(\mathbf Y_i \sim \mathbb P_{\theta_2}\)` then `\(\lim\limits_{n\rightarrow \infty}\overline{\mathbf{X}}_n = \theta_1 \neq \theta_2 = \lim\limits_{m\rightarrow \infty}\overline{\mathbf{Y}}_m\)` ] --- layout: false count: false # Statistical Invariance of Betti Numbers * Consider a family of distributions* `\(\mathcal{P}\)` on `\(\mathcal X \subseteq \mathbb R^D\)` with `\(\mathbb P, \mathbb Q \in \mathcal P\)` * Given `\(\mathbb{X}_n= \{ \boldsymbol{X}_1, \boldsymbol{X}_2, \dots \boldsymbol{X}_n \} \sim \mathbb{P}\)` and `\(\mathbb{Y}_m= \{ \boldsymbol{Y}_1, \boldsymbol{Y}_2, \dots \boldsymbol{Y}_m \} \sim \mathbb{Q}\)` .content-box-purple[ `\(\mathbf{S}(\mathbb{P}^{\otimes n})\!:= \mathbf{S}(\mathbb{X}_n)\!= \frac{1}{n} \Big( \beta_0\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \beta_1\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \dots , \beta_d\big( \mathcal{K}(\mathbb{X}_n,r_n) \big) \Big)\)` ] * **.purple[Invariance.]** .center[<body> `\(\bbox[20px, border: 2px solid orange]{ \text{Can we have that } \lim\limits_{n\rightarrow \infty}\mathbf{S}(\mathbb{P}^{\otimes n}) {=} \lim\limits_{m\rightarrow \infty}\mathbf{S}(\mathbb{Q}^{\otimes m}) \text{ ? } }\)`</body>] * **Example (2).** Consider `\(\color{red}{\mathcal{P} = \{ \mathcal{N}(\mathbf 0,\boldsymbol{\theta}) : \boldsymbol{\theta} \in \mathcal S^d_{++} \}}\)` and `\(\color{green}{\mathbf{S}(\mathbb{X}_n) = \overline{\mathbf{X}}_n}\)` .center[ If `\(\mathbf X_i \sim \mathbb P_{\theta_1}\)` and `\(\mathbf Y_i \sim \mathbb P_{\theta_2}\)` then `\(\lim\limits_{n\rightarrow \infty}\overline{\mathbf{X}}_n = \mathbf 0 = \lim\limits_{m\rightarrow \infty}\overline{\mathbf{Y}}_m\)` ] --- layout: false count: false # Statistical Invariance of Betti Numbers * Consider a family of distributions* `\(\mathcal{P}\)` on `\(\mathcal X \subseteq \mathbb R^D\)` with `\(\mathbb P, \mathbb Q \in \mathcal P\)` * Given `\(\mathbb{X}_n= \{ \boldsymbol{X}_1, \boldsymbol{X}_2, \dots \boldsymbol{X}_n \} \sim \mathbb{P}\)` and `\(\mathbb{Y}_m= \{ \boldsymbol{Y}_1, \boldsymbol{Y}_2, \dots \boldsymbol{Y}_m \} \sim \mathbb{Q}\)` .content-box-purple[ `\(\mathbf{S}(\mathbb{P}^{\otimes n})\!:= \mathbf{S}(\mathbb{X}_n)\!= \frac{1}{n} \Big( \beta_0\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \beta_1\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \dots , \beta_d\big( \mathcal{K}(\mathbb{X}_n,r_n) \big) \Big)\)` ] * **.purple[Invariance.]** .center[<body> `\(\bbox[20px, border: 2px solid orange]{ \text{Can we have that } \lim\limits_{n\rightarrow \infty}\mathbf{S}(\mathbb{P}^{\otimes n}) {=} \lim\limits_{m\rightarrow \infty}\mathbf{S}(\mathbb{Q}^{\otimes m}) \text{ ? } }\)`</body>] * **Example (3).** Consider `\(\color{red}{\mathcal{P} = \{ \mathcal{N}(\mathbf 0,\boldsymbol{\theta}) : \boldsymbol{\theta} \in \mathcal S^d_{++} \}}\)` and `\(\color{green}{\mathbf{S}(\mathbb{X}_n) = \text{Cov}(\mathbb{X}_n)}\)` .center[ If `\(\mathbf X_i \sim \mathbb P_{\theta_1}\)` and `\(\mathbf Y_i \sim \mathbb P_{\theta_2}\)` then `\(\lim\limits_{n\rightarrow \infty}\text{Cov}(\mathbb X_n) = \boldsymbol \theta_1 \neq \boldsymbol \theta_2 = \lim\limits_{m\rightarrow \infty}\text{Cov}(\mathbb Y_m)\)` ] --- layout: false count: false # Statistical Invariance of Betti Numbers * Consider a family of distributions* `\(\mathcal{P}\)` on `\(\mathcal X \subseteq \mathbb R^D\)` with `\(\mathbb P, \mathbb Q \in \mathcal P\)` * Given `\(\mathbb{X}_n= \{ \boldsymbol{X}_1, \boldsymbol{X}_2, \dots \boldsymbol{X}_n \} \sim \mathbb{P}\)` and `\(\mathbb{Y}_m= \{ \boldsymbol{Y}_1, \boldsymbol{Y}_2, \dots \boldsymbol{Y}_m \} \sim \mathbb{Q}\)` .content-box-purple[ `\(\mathbf{S}(\mathbb{P}^{\otimes n})\!:= \mathbf{S}(\mathbb{X}_n)\!= \frac{1}{n} \Big( \beta_0\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \beta_1\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \dots , \beta_d\big( \mathcal{K}(\mathbb{X}_n,r_n) \big) \Big)\)` ] * **.purple[Invariance.]** .center[<body> `\(\bbox[20px, border: 2px solid orange]{ \text{Can we have that } \lim\limits_{n\rightarrow \infty}\mathbf{S}(\mathbb{P}^{\otimes n}) {=} \lim\limits_{m\rightarrow \infty}\mathbf{S}(\mathbb{Q}^{\otimes m}) \text{ ? } }\)`</body>] * ***Assumptions:** 1. .small[<body> `\(\text{dim}(\mathcal{X}) = d \le D\)`. If `\(d < D\)` then `\(\mathcal{X}\)` is a compact, `\(d\)`-dimensional `\(\mathcal{C}^1\)` manifold </body> ] 1. .small[<body> Each `\(\mathbb{P} \in \mathcal P\)` admits a density `\(f\)` such that `\(f \in L_p(\mathcal{X})\)` for all `\(p \in \mathbb{N}\)` </body> ] 1. .small[<body> `\(\mathcal{K}(\mathbb{X}_n,r_n)\)` is the Čech complex constructed on `\(\mathbb{X}_n\)` with `\(r_n \asymp n^{-1/d}\)` </body> ] --- layout: false count: false # Statistical Invariance of Betti Numbers * Consider a family of distributions* `\(\mathcal{P}\)` on `\(\mathcal X \subseteq \mathbb R^D\)` with `\(\mathbb P, \mathbb Q \in \mathcal P\)` * Given `\(\mathbb{X}_n= \{ \boldsymbol{X}_1, \boldsymbol{X}_2, \dots \boldsymbol{X}_n \} \sim \mathbb{P}\)` and `\(\mathbb{Y}_m= \{ \boldsymbol{Y}_1, \boldsymbol{Y}_2, \dots \boldsymbol{Y}_m \} \sim \mathbb{Q}\)` .content-box-purple[ `\(\mathbf{S}(\mathbb{P}^{\otimes n})\!:= \mathbf{S}(\mathbb{X}_n)\!= \frac{1}{n} \Big( \beta_0\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \beta_1\big( \mathcal{K}(\mathbb{X}_n,r_n) \big), \dots , \beta_d\big( \mathcal{K}(\mathbb{X}_n,r_n) \big) \Big)\)` ] * **.purple[Invariance.]** .center[<body> `\(\bbox[20px, border: 2px solid orange]{ \text{Can we have that } \lim\limits_{n\rightarrow \infty}\mathbf{S}(\mathbb{P}^{\otimes n}) {=} \lim\limits_{m\rightarrow \infty}\mathbf{S}(\mathbb{Q}^{\otimes m}) \text{ ? } }\)`</body>] * **.purple[Definition.]** As `\(n \rightarrow \infty\)` and `\(nr_n^d \rightarrow t\)`, the **.purple[thermodynamic limit]** is the functional `\begin{align} \mathbf{S}(\mathbb{P}; t) = \lim_{n \rightarrow\infty}\mathbf{S}(\mathbb{P}^{\otimes n}) \end{align}` --- layout: false # `\(\beta\)`-equivalence .content-box-purple[ **.purple[Definition.]** `\(\mathcal{P}\)` admits `\(\beta\)`-equivalence if `\(\mathbf S(\mathbb{P}; t) = \mathbf S(\mathbb{Q}; t)\)` for all `\(\mathbb P, \mathbb Q \in \mathcal P\)` ] <br> -- * If `\(\mathcal{P} = \{ \mathbb P_\theta : \theta \in \Theta \}\)` is a **parametric** family of distributions: .content-box-purple.center[ `\(\mathbf S(\mathbb{P}_\theta; t) = \eta(t)\)` for all `\(\theta \in \Theta\)` ] --- count: false layout: false # `\(\beta\)`-equivalence .content-box-purple[ **.purple[Definition.]** `\(\mathcal{P}\)` admits `\(\beta\)`-equivalence if `\(\mathbf S(\mathbb{P}; t) = \mathbf S(\mathbb{Q}; t)\)` for all `\(\mathbb P, \mathbb Q \in \mathcal P\)` ] <br> * Let `\(\color{purple}{\mathcal{F}}\)` be the family of probability density functions associated with `\(\color{purple}{\mathcal{P}}\)` .content-box-purple[**.purple[Proposition.]** Suppose `\(\mathcal{F}\)` is a family of distributions such that:<br> for all `\(f,g \in \mathcal{F}\)` with `\(\mathbf{X} \sim f\)` and `\(\mathbf{Y} \sim g\)`, it holds that `\(f(\mathbf{X}) \stackrel{d}{=} g(\mathbf{Y})\)`. <br> Then, `\(\mathcal{F}\)` admits `\(\beta\)`-equivalence.] <br> -- * **.purple[Main idea.]** The SLLN from Yogeshwaran, Subag, and Adler (2017); Trinh (2017); Goel, Trinh, and Tsunoda (2019) are used to express `\(\mathbf{S}(\mathbb{P}; t)\)` as an expectation <br><br> -- * **.purple[Remark.]** Invariance extends to persistent Betti numbers and Euler characteristic --- layout: false count: false class: inverse, center, middle # Statistical Invariance ## .orange[via Topological Groups] --- layout: true class: center,split-two # .left[Group Invariance in Statistics] .column.top[.content[ <br><br><br><br><br> .left[.small[ * `\(\mathcal{G} = \{ g_\theta : \theta \in \Theta \}\)` is a group acting on `\(\mathcal{X}\)`<br><br> * Consider a map `\(T: \mathcal{X} \rightarrow \mathcal{T}\)` - `\(T\)` is `\(\color{purple}{\mathcal{G}}\)`.purple[-invariant] if it is constant on orbits, i.e., .center[ <body> `\(T(g_\theta\cdot\mathbf{x}) = T(\mathbf{x})\)` </body> ] - `\(T\)` is `\(\color{red}{\mathcal{G}}\)`.red[-maximal invariant] if it is constant **only** on orbits, i.e., .center[ <body> `\(T(\mathbf{x}) = T(\mathbf{y})\)` if and only if `\(\mathbf{y} \in \mathcal{G}\mathbf{x}\)` </body>] * If `\(\mathbf{X} \sim f\)` be a random variable - The action of `\(\mathcal{G}\)` on `\(\mathbf{X}\)` *induces* `\(g_\theta \cdot \mathbf{X} \sim f_\theta\)` ]]]] .column.bg-main1.top[.content[ <br><br><br><br><br> .center[<img src="images/group2.svg" width="400",height="400">]] ] --- class: show-11 count: true --- class: show-11 count: false <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> `\(\mathcal{G} = \{ g_\theta : \theta \in \Theta \}\)` *generates* a family of distributions `\(\mathcal{F} = \{f_\theta : \theta \in \Theta\}\)` .tiny.left[.caption[Eaton (1989); Wijsman (1990)]] --- class: show-11 count: false <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> `\(\mathbf{X_\theta} \sim f_\theta \ \ \ \longrightarrow \ \ \ Z_\theta = f_\theta(\mathbf X_\theta) \ \ \ \longrightarrow \ \ \ f_{Z_\theta}\)` is `\(\mathcal G\)`-invariant .tiny.left[.caption[Eaton (1989); Wijsman (1990)]] --- layout: false # Statistical Invariance - I .content-box-purple[**.purple[Theorem.]** * Define a family of distributions `\(\mathcal{F} = \{ f_\theta : \theta \in \Theta \}\)` by `\begin{align} \smash{f_\theta(x) := \xi\big( g_\theta \circ \Psi(x) \big),} \end{align}` where - `\(\Psi:\mathcal{X} \rightarrow \mathcal{Y}\)` is differentiable - `\(\mathcal{G} = \{ g_\theta : \theta \in \Theta \}\)` is a group of isometries on `\(\mathcal{Y}\)` - `\(T:\mathcal{Y} \rightarrow \mathcal{T}\)` is `\(\mathcal{G}\)`-maximal invariant - `\(\xi\)` ensures `\(f_\theta\)` is a valid density function. * Then, `\(\mathcal{F}\)` admits `\(\beta\)`-equivalence if and only if there exists some `\(\zeta:\mathcal{T} \rightarrow \mathbb{R}\)` `\begin{align} \text{det}(J_{\Psi^{-1}}(y)) = \zeta(T(y)) \end{align}` ] --- layout: false class: left # Statistical Invariance - I : .red[Example] .content-box-red[ $$ f_\theta(x_1,x_2) = \big( \cos(\theta) \Phi^{-1}(x_1) + \sin(\theta )\Phi^{-1}(x_2) \big)^2 \hspace{0.5cm} \mathbf{1}(0 \le x_1,x_2 \le 1) $$ ] -- * .small[ <body> `\(\mathcal{X} = [0,1]^2, \hspace{0.2cm} \mathcal{Y} = \mathbb{R}^2,\)` and `\(\Psi : \mathcal{X} \rightarrow \mathcal{Y}\)` such that `\((x_1,x_2) \mapsto (\Phi^{-1}(x_1),\Phi^{-1}(x_2))\)` </body> ]<br><br> * .small[ <body> `\(\mathcal G = S\mathcal{O}(2)\)` for which `\(g_\theta = \smash{\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}}\)` and `\(T(\mathbf{y}) = ||\mathbf{y}||\)` </body> ] <br><br> * .small[ <body> `\(\xi:\mathcal{Y} \rightarrow \mathbb{R}\)` is given by `\(\xi(\mathbf{y}) = \big( (1,0)^\top\mathbf{y} \big)^2\)` </body>]<br> -- * .small[ <body> Then we can express `\(\bbox[2pt,#ff9166]{f_\theta(x_1,x_2) = \xi(g_\theta \circ \Psi(x_1,x_2))}\)` </body> ]<br><br> -- * .small[ <body> **.red[Jacobian condition:]** For `\(\mathbf{y} = (y_1,y_2) \in \mathcal{Y},\)` observe `\(\Psi^{-1}(y_1,y_2) = (\Phi(y_1),\Phi(y_2))\)` </body> ] `\begin{align} \text{det}(J_{\Psi^{-1}}(\mathbf{y})) = \phi(y_1)\cdot\phi(y_2) = \exp\Big( -\frac{y_1^2}{2} -\frac{y_2^2}{2} \Big) = \exp\Big( -\frac{1}{2}T(\mathbf{y})^2 \Big) \end{align}` --- layout: false count: false class: left # Statistical Invariance - I : .red[Example] .content-box-red[ $$ f_\theta(x_1,x_2) = \big( \cos(\theta) \Phi^{-1}(x_1) + \sin(\theta )\Phi^{-1}(x_2) \big)^2 \hspace{0.5cm} \mathbf{1}(0 \le x_1,x_2 \le 1) $$ ] .center[<img src="images/normal4.gif" width="550",height="550">] --- layout: false count: false class: inverse, center, middle # Statistical Invariance ## .orange[via Excess Mass] --- layout: false # Statistical Invariance - II - For `\(\mathbb{P}\)` with pdf `\(f\)`, the **.purple[excess mass function]** is given by `\begin{align} \hat{f}(t) := \mathbb{P}\big( \{ \mathbf{x} \in \mathcal{X} : f(\mathbf{x}) \ge t \} \big) \end{align}` .center[<img src="images/emf-1.svg" width="600",height="400">] --- layout: false count: false # Statistical Invariance - II - For `\(\mathbb{P}\)` with pdf `\(f\)`, the **.purple[excess mass function]** is given by `\begin{align} \hat{f}(t) := \mathbb{P}\big( \{ \mathbf{x} \in \mathcal{X} : f(\mathbf{x}) \ge t \} \big) \end{align}` .center[<img src="images/emf-2.svg" width="600",height="400">] --- layout: false count: false # Statistical Invariance - II - For `\(\mathbb{P}\)` with pdf `\(f\)`, the **.purple[excess mass function]** is given by `\begin{align} \hat{f}(t) := \mathbb{P}\big( \{ \mathbf{x} \in \mathcal{X} : f(\mathbf{x}) \ge t \} \big) \end{align}` .center[<img src="images/emf-3.svg" width="600",height="400">] --- layout: false count: false # Statistical Invariance - II - For `\(\mathbb{P}\)` with pdf `\(f\)`, the **.purple[excess mass function]** is given by `\begin{align} \hat{f}(t) := \mathbb{P}\big( \{ \mathbf{x} \in \mathcal{X} : f(\mathbf{x}) \ge t \} \big) \end{align}` .content-box-purple.center[ .large[
<i class="fas fa-hand-point-right faa-horizontal animated "></i>
] `\(\hspace{0.5cm}\)` If `\(\mathbf{X} \sim f\)` and `\(\mathbf{Y} \sim g\)`, then `\(f(\mathbf{X}) \stackrel{d}{=} g(\mathbf{Y}) \iff \hat{f} = \hat{g}\)` ] <br><br><br> -- - Given a measure `\(\mu\)` on `\(\mathcal{X}\)`, a function `\(\Psi(\cdot)\)` is the .purple[modular character of] `\(\color{purple}{\mu}\)` if <br> for each `\(\phi \in \text{Diff}(\mathcal{X})\)` and `\(\mathbf{y} = \phi(\mathbf{x})\)`, `\(\hspace{0.25cm}\mu(d\mathbf{y}) = \Psi(|\text{det}J_\phi|)\mu(d\mathbf{x})\)`<br><br><br> -- `\(\hspace{1cm}\)` **Example.** When `\(\mathcal{X} = \mathbb{R}^d\)` and `\(\mu = \nu_d\)` (Lebesgue), `\(\Psi(x) = x\)` --- layout: false # Statistical Invariance - II .content-box-purple[ **.purple[Theorem.]** Suppose `\(g\)` is a probability density on `\(\mathcal{X}\)` w.r.t. `\(\hspace{0.2cm} \nu\)` with modular character `\(\Psi\)` <br> `\(\hspace{0.5cm}\)` (1) `\(\text{supp}(g) = K \subset \mathcal{X}\)`, <br> `\(\hspace{0.5cm}\)` (2) Let `\(\{\phi_1 \dots \phi_n\}\)` be maps such that `\(K_i := \phi_i(K)\)` and `\(\nu(K_i \cap K_j) = 0\)`.<br> Define the density `\(f_\phi\)` by `\begin{align} f_\phi(\mathbf{x}) = \smash{\sum_{i=1}^n{g(\phi_i(\mathbf{x}))}}\mathbf{1}(\mathbf{x} \in K_i) \end{align}` <br> Then, `\(\mathcal{F} = \{ f_\phi : \phi \in \Phi \}\)` admits `\(\beta\)`-equivalence for <br> .center[ <body> `\(\Phi := \Big\{ \phi_1 \dots \phi_n : \sum\limits_{i=1}^n{\Psi(|\text{det}J_{\phi^{-1}_i}|)}=1 \Big\}\)` </body> ] ] --- layout: false # Statistical Invariance - II : .red[Example] .small[ <body> Given a density `\(g\)` on `\(\mathbb{R}_+\)` and `\(\Theta = \{ (a,b) : \frac{1}{a} + \frac{1}{b} = 1 \}\)`, define `\(\{ f_\theta\!: \theta\!\in\!\Theta \}\)` on `\(\mathcal{X} = \mathbb{R}\)` </body>] .small[.center[.content-box-red[ $$ f_\theta(x) = \color{red}{g(-bx) \mathbf{1}(x < 0)} + \color{blue}{g(ax) \mathbf{1}(x \ge 0)} $$ ]]] .center[<img src="images/Gamma.gif" width="450",height="450">] .small[ <br> `\(\phi_1(x) = ax \text{ and } \phi_2(x) = -bx,\)` then `\(\Psi(|\text{det}J_{\phi^{-1}_1}|)+\Psi(|\text{det}J_{\phi^{-1}_2}|) = \frac 1 a + \frac 1 b = 1.\)` ] --- layout: true class: center,split-two # .left[Statistical Invariance - II] * `\(\mathscr{X}=(\mathcal X, \pi, \mathcal Y, \mathcal Z)\)` is a smooth fiber bundle with local trivialization `\(\{ U_\alpha,\psi_\alpha \}\)` .column.bg-main1[.content[ <br><br><br><br><br><br><br> .center[<img src="images/bundle.svg" width="400",height="400">]] ] .column[.content[ <br><br><br><br><br><br><br> .left[.small[ * `\(\mu:\)` A probability measure on `\(\mathcal Z\)`<br><br> * `\(\nu:\)` Measure on `\(\mathcal Y\)` with modular character `\(\Psi\)`<br><br> * `\(\mathbb P:\)` Distribution on `\(\mathcal Y\)` with density `\(g\)` w.r.t `\(\nu\)`<br><br> * `\(\phi:\mathcal Y \times \mathcal Z \rightarrow \mathcal Y\)` is a map such that * `\(\phi(\cdot,z) \in \text{Diff}(\mathcal Y)\)` for each `\(z \in \mathcal Z\)`<br><br> * For each `\(x \in \mathcal X\)` with <br>local coordinates `\(x=(z,y_z)\)`, `\(y=\psi^{-1}_{\alpha,z}(y_z)\)`<br><br> * Define `\(f_\phi(x) = g(\phi(z,y))\)` ]]]] --- class: show-10 count: true --- class: show-11 count: false --- class: show-11 count: false <br><br><br><br><br><br><br> <br><br><br><br><br><br><br> .content-box-purple[.small[ **.purple[Theorem.]** `\(\{ f_\phi\!:\!\phi\!\in\!\Phi \}\)` admits `\(\beta\)`-equivalence for `\(\Phi := \Big\{ \phi\!:\!\!\displaystyle\int_{\mathcal Z}\!{\!\Psi\left( \big\lvert \text{det}J_{\phi_z^{-1}} \big\rvert \right)\!\mu(dz)}\!=\!1 \Big\}\)` ]] --- layout: false # Verifying `\(\beta\)`-equivalence * Given a family of distributions `\(\mathcal F\)`, can we check if `\(\mathcal F\)` admits `\(\beta\)`-equivalence? <br><br> -- .content-box-purple[ **.purple[Theorem.]** `\(\mathcal F = \{ f_\theta : \theta \in \Theta \}\)` admits `\(\beta\)`-equivalence if and only if for all `\(k \in \mathbb N\)` `\begin{align} \nabla_{\theta} \left(\int_{\mathcal X}{f_\theta^{k+1}(\mathbf{x}) d\mathbf{x}}\right) = \mathbf 0 \end{align}` ] -- * Under standard stochastic regularity assumptions, it leads to a geometric constraint on `\(f_\theta\)`<br><br> .content-box-purple[ `\(\mathcal F = \{ f_\theta : \theta \in \Theta \}\)` admits `\(\beta\)`-equivalence if and only if for all `\(k \in \mathbb N\)` `\begin{align} \big\langle S_{\theta},f_\theta^k \big\rangle_{L_2(\mathcal X)} = \mathbf 0, \end{align}` where `\(S_{\theta} = \nabla_{\theta}\log f_\theta\)` is the **score function** used in statistical inference ] --- layout: false # Summary * `\(\mathcal{P}\)` (equiv. `\(\mathcal F\)`) admits `\(\beta\)`-equivalence if `\(\mathbf S(\mathbb P; t) = \mathbf S(\mathbb Q; t)\)` for all `\(\mathbb P, \mathbb Q \in \mathcal P\)` -- * `\(\color{red}{f(\mathbf X) \stackrel{d}{=} g(\mathbf{Y}), \ \forall f,g \in \mathcal F \text{ s.t. } \mathbf X \sim f, \mathbf Y \sim g}\)` `\(\Rightarrow\)` `\(\color{green} {\mathcal P}\)` .green[admits] `\(\color{green}\beta\)`.green[-equivalence]<br> 1. via topological groups 1. by preserving excess mass 1. `\(\big\langle S_\theta, f^k_\theta \big\rangle = \mathbf 0\)` for all `\(k = 0,1,2,\dots\)`<br><br> -- * **.purple[Other topological summaries:]**<br><br> 1. *.blue[Euler characteristic:]* `\(\hspace{1.3cm}\)` `\(\mathbf S(\mathbb P^{\otimes n}) = \frac{1}{n} \ \chi\big( \mathcal K(\mathbb X_n, r_n) \big)\)`<br><br> 1. *.blue[Persistent Betti numbers:]* `\(\mathbf S(\mathbb P^{\otimes n})\! =\!\!\frac{1}{n} \beta^{(r,s)}_i\big( \mathcal K(\mathbb X_n, r_n) \big), \ i\!\!=\!0,\!1 \!\dots d\)`<br><br> 1. *.blue[Process level summaries:]* `\(\hspace{0.075cm}\)` `\(\mathbf{S}(\mathbb P; t) \in \mathscr{D}\big([0,\infty)\big)\)`<br><br> 1. *.blue[Persistence diagrams:]* `\(\hspace{0.8cm}\)` `\(\mathbf{S}(\mathbb P) = \mathbf{Dgm}(\text{Filt}(\phi_{\mathbb P}))\)`<br> - e.g., `\(\phi_{\mathbb P} = K_\sigma * f_{\mathbb P}\)`, or `\(\phi_{\mathbb P} = D^K_{\mathbb P}\)` .tiny[Bobrowski and Mukherjee (2015); Krebs and Polonik (2019); Owada and Thomas (2020); Phillips, Wang, and Zheng (2015); Chazal, Fasy, Lecci, Michel, Rinaldo, and Wasserman (2017)] --- count: false layout: false class: inverse,center, middle # Thank you! ### <a href="https://www.arxiv.org/abs/2001.00220"style="font-family:Courier;font-size:32px;color:orange">arxiv.org/abs/2001.00220 </a> --- count: false layout: false # .orange[References] Bobrowski, O. and M. Kahle (2018). "Topology of random geometric complexes: A survey". In: _Journal of Applied and Computational Topology_ 1.3-4, pp. 331-–364. Bobrowski, O. and S. Mukherjee (2015). "The topology of probability distributions on manifolds". In: _Probability theory and related fields_ 161.3-4, pp. 651-686. Chazal, F, B. Fasy, F. Lecci, et al. (2017). "Robust topological inference: Distance to a measure and kernel distance". In: _The Journal of Machine Learning Research_ 18.1, pp. 5845-5884. Eaton, M. L. (1989). _Group Invariance Applications in Statistics_. Hayward, CA and Alexandria, VA: Institute of Mathematical Statistics and the American Statistical Association, pp. i-133. Goel, A, K. D. Trinh, and K. Tsunoda (2019). "Strong law of large numbers for Betti numbers in the thermodynamic regime". In: _Journal of Statistical Physics_ 174.4, pp. 865-892. --- count: false layout: false # .orange[References] Kahle, M. and E. Meckes (2013). "Limit theorems for Betti numbers of random simplicial complexes". In: _Homology Homotopy Appl._ 15.1, pp. 343-374. Krebs, J. T. and W. Polonik (2019). "On the asymptotic normality of persistent Betti numbers". In: _arXiv preprint arXiv:1903.03280_. Owada, T. and A. M. Thomas (2020). "Limit theorems for process-level Betti numbers for sparse and critical regimes". In: _Advances in Applied Probability_ 52.1, p. 1–31. DOI: [10.1017/apr.2019.50](https://doi.org/10.1017%2Fapr.2019.50). Phillips, J. M., B. Wang, and Y. Zheng (2015). "Geometric inference on kernel density estimates". In: _31st International Symposium on Computational Geometry_. Vol. 34. , pp. 857-871. Trinh, K. D. (2017). "A remark on the convergence of Betti numbers in the thermodynamic regime". In: _Pacific Journal of Mathematics for Industry_ 9.1, p. 4. Wijsman, R. A. (1990). _Invariant Measures on Groups and Their Use in Statistics_. Hayward, CA: Institute of Mathematical Statistics.